

Transportation Asset Data Management

Our goal is to develop an intelligent framework to understand and improve how State DOTs store, access, and use as-built transportation asset data. (2 Clinic Students)

Advisors: Dr. Yusuf Mehta

Over the next semester, we will research asset management:

- Research State DOT practices for as-built data storage and formats (GIS, databases, BIM, paper-to-digital conversion)
- Compare different DOT data management systems for efficiency, accessibility, and interoperability.
- Identify challenges in data integration across asset classes
- Develop a best-practice guideline or framework for standardized as-built data management.
- · Publish and present the research outcomes.

100	7 DI	40	i m	60	17	15				100		Tief	ic Data		Project	History														
IT #	_	Ou Ln (-		-		-	Te.	u lo	Self In	n. (pol)	_		440.	takel cood A	_	w81 8	tenz la	net 2 C	el4 C	W15 C	left 6 D	H87 0	Detti	Dell'9	Plate Redict Let	Temp. Pave Type Units E	poc (poi) (K. Stal	n kī	E (3)
		N N	0				2002/9			356	9.397	497,465			1982.704	77	13%	2.735	2.748	2.577	2.367	1.546	1.617	1.236	1.013	5.90	76	0	0	
1	76 L	N N	0	0	0.300	2002	2002/0	9/11	£79	9.03	6.988	410,402	808 F	Arr 1	1808.231	77	4196	3.379	3.393	3.192	2.964	2.494	2.105	1.716	1.368	5.90	76	0	0	
	76 L	N.N	0	0	0.412	2002	2002/0	9/11	4.99	12.68	10,006	1.137,196	808 F	Av 3	9628.632	75	2.068	2.163	2199	2.079	1.547	1.682	1.466	1.202	1.009	5.98	76	0	0	
	76 L	N N	0	0	0,501	2002	2002/0	6/11	4.51	3.44	10,593	468,344	808 Fi	Aw 1	9077.871	77	3242	2.498	2,436	2,277	2.121	1.718	1.405	1.115	0.872	5.90	76	0	0	
	76 L	NN	0	0	0.603	2002	2002/0	9/11	4.91	9.22	6.971	437,202			8797,083	77	4.045	3.307	2.293	2105	2.890	2,433	2.110	1.721	1.390	5.98	75	0	0	
	76.1	N N	0	0			2002/0			9.45	8.241	470,056			9006.906	.78	3,607	3.429	3.429	3.213	2.948	2,378	1.834	1.417	1,129	5.98	75	0	. 0	
	76 L	N N	0	0			2002/0			0.77	0.509	519,813			1998 595	77	2.362	2.783	2.74)	2.612	2,428	2.935	1.720	1.418	1.142	5.90	75	0	0	
	NL	NN	0				2002/1			361	8,548	495,101			9432.100	79	3.440	3.018	3.256	3 018	2.730	2.166	1.753	1.378	1.064	5.99	75	0	0	
	76 L	N.N.	0				2002/0			10.21	9,717	593,434			9030.287	76	2,945	2.495	2,420	2.263	2.093	1.753	1.504	1.243		5.90	75	0	0	
	26 L	\$ 5	0				2002/4			4.76	4,083	60,318			9602.006	20	17.014	13.641	13.567	11.068	8.900	5.000	1900	2.719	2.005	5.90	27	0	0	
	NL	5 5	0				2002/0			5.81	4,010	109,529			1750:073		11.403	9.320	5.329	E019	6.875	4.901	3.020	2.875	2,295	5.90	79	0	0	
	76 L	5.5	0				2002/0			9.55	10,649	495,177			1702.490	78	3.172	2.457	2.457	2.253	2.050	1.669	1.399	1.113	0.862	5.90	76	0	0	
	NL	\$ \$	Q				2002/1				11,354	540,952			9030.287	76	2,074	2.446	2.341	2104	1.908	1.596	1.300	1.546	0.903	5.90	76	0	0	
	ML	3.5	0				2002/1			0.55	7,124	405,177			9262,917	70	3,705	3.341	3.290	3.137	2,900	2.461	2.066	1.683	1.364	5.90	76	0	0	
	76 L	5 5	0				2002/9			10.45	8,910	\$36,258			1021.822	.79	2.330	2.108	3.094	2.967	2,616	2.399	2101	1.760	1.462	5.90	76	0	0	
	76L	5 5		0			2002/0			9.72	9,297	512,110			1136.775	79	3.244	2.729	2,700	2.526	2,337	1.902	1,582	1.263	1.002	5.90	77	0	0	
	76 L	2.3	0	0			2002/1			9.53	7.522	403,101			8321.922	79	2.701	3.094	2.123	2.952	2.735	2.314	1.945	1,904	1.329		70	0	0	
	ML	3 3	0	0			2002/1			0.00	.0.				8316.535	77	5.116	4.090	4 247	3.906	3.537	2.855	2.358	1.917	1.562	5.90	76 77	0		
	76 L	2 2	0	0			2002/0			0.00	5.245	017.051	906 L		8327.109 8342.970	76	5.324	4.336	4142	3.830	3.504	2 823	2369	1.943	1,600	5.90 5.90	77	5,119,335	103	
	76 L	2 2	4				2002/0			7.79	0.245				1332.396	79	1.745	3.870	2,729	2.453	3.200	2,637	2,350	1.925	1.500	5.90	70	0.110.000	103	
	76 L						2002/0			0.00			BOR A		8448.711	27	4.730	3.677	3.742	3 495	3.202	2,614	2.209	1.804	1.600	5.98	78		0	
	761						2002/0			7.52	6.095	738.220			1305.961	77	A349	3.712	3.683	3,527	1,299	2.916	2.400	1,977	1,607	5.90	77	3.713.399	124	
		5 5					2002/0			0.00	5,000				8189.646	79	4.747	3.779	3,000	3.548	3.260	2712	2.322	1.005		5.90	79	2,112,300		
	100	2020	V.	V.	1,961	4002	20027	GCHC3	200	0.00	V	۰	000 %	escos	0103,040	10	A.74C	24/2	3.000	3.540	3,200	2012	2,022	1.003	1.543	3.50	14			
	-	and bank	ALLY	and the	1		2	1		4	5	6	-1		1	2		-17												
		Deflection	000		1336	2	735	274	3	2577	2.367			7	1.236	1.013														
	Di	itance (in	ches]		0		-12	15	2	17	. 24	25	- 34	17	63	72														
Pave 1							Pu	O Laur	rinna			1	n / Proper																	
				SA	e III	4.90		C The			17.00	1000	William		Epoc	and T		0												
	ype 80											Epipo	4	17,40																
Test 7	yee FA	ir f	Nate Ba	sSun Se	4	5.90		CTNO	kowens (PE .	0.00	Melpo	-	5,397	K. Static	(Bog		0												
Air Tens	181	77	Plate L	oad (b	0 85	62.7	146	G TNd	kness I	int	10.00	100	1	-,00	LT	Epp	0.0	MI												
ul Tens	FI	76	Re	ughren	¥ (1)	0.00	SN	EN	156	DER	0.00		Area (Sc	int	0.00															
ohex																														
	dr 3676				Type.		JP 10					M. Pu																		